KTW Titan Matrix Composite (TMC)

Titanium-based Lightweight Material for High-Strength Components

The alternative to steel and other conventional materials for manufacturing industrial components. Smaller and lighter custom parts with increased longevity and great potential for fuel and energy savings. Also suitable for orthopedic implants.

Manufacturing process is decisive

Lightweight construction is finding its way into many technologies. The focus is particularly on thermally, mechanically and dynamically highly stressed components. Suitable lightweight materials make it possible to reduce the component geometry and/or the component weight, in each case without limiting the load-bearing capacity. The main materials to choose from are aluminium, carbon and titanium, which, however, differ significantly from each other in their material properties.

With the KTW TitanMatrixComposite , a new titanium-based material has now been added. The technical breakthrough of this type of material (Ti MMC), which has been worked on for decades in the aerospace industry, has so far been hindered by an unreliable and reproducible manufacturing process. KTW was able to overcome this hurdle with the development of the magnetron sputtering process.

Just-as-Needed Lightweight Components for Many Industrial Applications

In a world where energy usage is an increasingly important factor for the market success and profitability of products and technologies, materials that can replace steel and other heavyweight elements are sorely needed.

KTW Titan Matrix Composites are made up of SiC fibers inside a metal matrix, usually a titanium alloy. They combine the best of both worlds: the low specific weight of titanium with the fibers’ high tensile strength and stiffness. The result is a lightweight material with high homogeneity that retains its properties up to temperatures of 600°C and, due to its titanium surface, is corrosion resistant and biocompatible.

In addition, thanks to being manufactured using KTW Magnetron Sputtering, TMC components are able to adopt a variety of shapes. The results are parts that are just as strong or stronger than conventional alternatives while weighing a lot less, opening up huge potentials for energy and fuel savings for a wide range of industries and applications.

"Half as heavy and twice as strong as high-alloy steel -
and at temperatures up to 600° Celsius!"

What is the composition of TMC?

Titanium Matrix Composite (TMC) is a fibre-reinforced composite material in which SiC fibres are inserted into a metal matrix of titanium and form a unit via a gapless form closure (quasi-material closure). Due to the special features of the magnetron sputtering process, any titanium alloy can be used as a metal matrix.
The titanium convinces with its low specific weight. The SiC fibres provide the high tensile strength and stiffness. In contrast to many lightweight materials, TMC retains its material properties even at high temperatures of up to 600 °C. Since the SiC fibres do not come to the surface, the material retains its corrosion resistance and biocompatibility.
SiC-Faser
Ti / Ti-Legierung Metallmatrix
TMC

TMC
in figures

CharacteristicsTMCHigh-strength SteelTi-alloy
Density in g/cm347,84,6
Strength in Mpa220017001100
Strength at 600°C in Mpa1400800650
Stiffness in Gpa210190115
Elongation in %1,3615
Thermal expansation in K°-15 x 10-612 x 10-68,5 x 10-6

Component design is crucial

The material properties of the TMC require a specific component design.

Support for material selection

PropertiesAluTMCCarbon
Weight+o+
Temperature resistance-++-
Strengtho++-
Durability-++o
Stiffnesso++++
Ductilityo+o
Corrosion resistance-+++
Multi-dimensional load capacity++-
Biocompatibility-++-

Alu
TMC Carbon

?

TMC's value proposition

Benefits of KTW Titan Matrix Composites

Significantly Increased Load Capacity in Comparison to Steel

At the same dimensions, KTW Titan Matrix Composites possess 75% higher tensile strength and a 10% increase in stiffness than equivalent high-alloy steel components. This also means that, at consistent load, a significant reduction of component size is possible. In addition, TMC components show the same or better performance at high temperatures than their steel-alloy counterparts.

50% Weight Reduction

When compared with components made of high-alloy steel, TMC-built components on average weigh half as much at higher levels of rigidity. This allows fabricating large machinery such as plane turbines and other heavy duty appliances at a much lower weight, leading to great savings in energy and fuel in the final application.

Versatile Applications

The process is suitable for many kinds of components from all kinds of industries and processes. It delivers perfect and repeatable quality thanks to a high level of automation. Machining and 3D-printing allow the production of many desired shapes. Low reactivity and high biocompatibility also allow for usage in the medical field, for example, in artificial joints.

Facts

Perfect and reproducible quality by means of Magneton Sputter Process

High performance in high temperature area

Versatile usable

Areas of Application for This Lightweight Material

KTW Titan Matrix Composites are employable in a wide range of industries and fields:

  • General mechanics – The material is able to replace a great number of parts in different kinds of machinery. Examples include connection rods, bolts, valves, and other components with high demands for performance.
  • Aerospace – Here, the process can provide lighter and more stable turbine/fan blades, inlet/outlet valves, rods, bolts, pins, shafts, and more. For example, due to the material’s minimal thermal expansion, turbine blades made from TMC can greatly increase the efficiency of plane engines.
  • Cars/motorsports – TMC components are already in use in Formula 1 Toyota engines. In general, they are able to increase the power density of electric motors by reducing the moving mass e.g. of the rotor or stator.
  • Medical field – Low reactivity and high biocompatibility make KTW Titan Matrix Composites perfect material for orthopedic implants.

Sample Applications

Latest News

Are you interested or do you have questions?

Leave us your name and telephone number. We will get back to you as soon as possible.